Systematic review of self-ligating brackets

Stephanie Shih-Hsuan Chen,^a Geoffrey Michael Greenlee,^b Jihyun-Elizabeth Kim,^c Craig L. Smith,^c and Greg J. Huang^d

Seattle, Wash

Introduction: Self-ligating brackets have been gaining popularity over the past several decades. Various advantages for these systems have been claimed. The purposes of this systematic review were to identify and review the orthodontic literature with regard to the efficiency, effectiveness, and stability of treatment with selfligating brackets compared with conventional brackets. Methods: An electronic search in 4 data bases was performed from 1966 to 2009, with supplemental hand searching of the references of retrieved articles. Quality assessment of the included articles was performed. Data were extracted by using custom forms, and weighted mean differences were calculated. Results: Sixteen studies met the inclusion criteria, including 2 randomized controlled trials with low risk of bias, 10 cohort studies with moderate risk of bias, and 4 crosssectional studies with moderate to high risk of bias. Self-ligation appears to have a significant advantage with regard to chair time, based on several cross-sectional studies. Analyses also showed a small, but statistically significant, difference in mandibular incisor proclination (1.5° less in self-ligating systems). No other differences in treatment time and occlusal characteristics after treatment were found between the 2 systems. No studies on long-term stability of treatment were identified. Conclusions: Despite claims about the advantages of self-ligating brackets, evidence is generally lacking. Shortened chair time and slightly less incisor proclination appear to be the only significant advantages of self-ligating systems over conventional systems that are supported by the current evidence. (Am J Orthod Dentofacial Orthop 2010;137:726.e1-726.e18)

Sin recent years. However, self-ligation is not a new concept. The first self-ligating bracket, the Russell attachment, was introduced by Stolzenberg¹ in the early 1930s. Perhaps because of skepticism in the orthodontic society at that time, or the lack of promotion, it did not gain much popularity. During the past several decades, interest in self-ligating brackets has been rekindled, with the introduction of various types of new self-ligating systems. These self-ligating brackets have been touted to possess many advantages over conventional edgewise brackets.²⁻⁴

Self-ligating brackets can be divided into 2 main categories, active and passive, according to their mechanisms of closure. Active self-ligating brackets have a spring clip that stores energy to press against the arch-

From the Department of Orthodontics, School of Dentistry, University of Washington, Seattle.

Submitted, September 2009; revised and accepted, November 2009. 0889-5406/\$36.00

Copyright @ 2010 by the American Association of Orthodontists. doi:10.1016/j.ajodo.2009.11.009 wire for rotation and torque control. In-Ovation (GAC International, Central Islip, NY), SPEED (Strite Industries, Cambridge, Ontario, Canada), and Time (Adenta, Gilching/Munich, Germany) are examples of active self-ligating brackets. On the other hand, passive self-ligating brackets usually have a slide that can be closed which does not encroach on the slot lumen, thus exerting no active force on the archwire. Damon (Ormco, Glendora, Calif) and SmartClip (3M Unitek, Monvoria, Calif) are 2 popular brands of passive design, although the SmartClip's appearance resembles conventional brackets and does not have a slide.

The claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets.^{2,5-8} This occurs because the usual steel or elastomeric ligatures are not necessary, and it is claimed that passive designs generate even less friction than active ones.^{8,9} With reduced friction and hence less force needed to produce tooth movement,¹⁰ self-ligating brackets are proposed to have the potential advantages of producing more physiologically harmonious tooth movement by not overpowering the musculature and interrupting the periodontal vascular supply.² Therefore, more alveolar bone generation, greater amounts of expansion, less proclination of anterior teeth, and less need for extractions are claimed to be possible. Other claimed advantages include full and secure wire ligation,¹¹ better sliding mechanics and possible

^aVisiting scientist, Taipei, Taiwan.

^bClinical assistant professor.

^cDental student.

^dAssociate professor and chairman.

Supported by NIDCR grant R25 DE018436.

The authors report no commercial, proprietary, or financial interest in the products or companies described in this article.

Reprint requests to: Greg J. Huang, Box 357446, University of Washington, Seattle, WA 98195-7446; e-mail, ghuang@u.washington.edu.

anchorage conservation,^{3,4} decreased treatment time, longer treatment intervals with fewer appointments,^{3,12,13} chair time savings, less chair-side assistance and improved ergonomics,¹³⁻¹⁷ better infection control,¹⁵ less patient discomfort,^{3,4} and improved oral hygiene.¹⁶⁻¹⁸

However, self-ligating brackets have some disadvantages, including higher cost, possible breakage of the clip or the slide, higher profile because of the complicated mechanical design, potentially more occlusal interferences and lip discomfort, and difficulty in finishing due to incomplete expression of the archwires.

Many in-vitro studies have investigated parameters such as frictional resistance and torque expression in self-ligating systems.¹⁹ Many have shown that less friction is generated with self-ligating brackets compared with conventional brackets in the laboratory,^{5-8,16,20} and, therefore, less force is required to produce tooth movement.²¹ However, the suitability of applying the results from in-vitro studies to clinical situations and the importance of friction in alignment, sliding mechanics, and total treatment time have not been fully addressed. Many case series, several cohort studies, and a few randomized controlled trials have addressed various parameters of self-ligating brackets. To date, no systematic review has synthesized evidence from these in-vivo clinical studies.

The a priori aim of this systematic review was to identify and review the orthodontic literature with regard to the efficiency (chair time, treatment time), effectiveness (occlusal indices, arch dimensions), and stability of treatment with self-ligating brackets compared with conventional brackets. If the data allowed, a meta-analysis would be performed.

MATERIALS AND METHODS

The following criteria were formulated a priori to select articles for inclusion in this review. The inclusion criteria were (1) clinical studies that compared selfligating with conventional appliances regarding their efficiency, effectiveness, or stability; (2) all ages and sexes; and (3) all languages. The exclusion criteria were (1) in-vitro, ex-vivo, or animal studies; (2) studies with no comparison group; and (3) editorials, opinions, or philosophy articles with no subjects or analytical design.

Electronic data bases—PubMed, Web of Science, EMBASE, and Cochrane Library—from 1966 to the third week of May 2009 were searched with the assistance of a senior research librarian at the University of Washington Health Sciences Library. Search strategies and key words are shown in Appendix 1. Titles and abstracts of potential articles for inclusion were examined by at least 2 reviewers (S.S.-H.C., J.-E.K., C.L.S.); the articles were included based on consensus agreement on the above criteria. Abstracts of articles with uncertain inclusion characteristics were examined, with the full article retrieved if necessary. Grey literature was considered, but ultimately only published peerreviewed articles were included.

After compiling the list of studies to be included, 2 investigators (S.S.-H.C., J.-E.K., C.L.S.) read the articles and abstracted the data onto custom dataabstraction forms, which had been piloted on 2 studies of each type (cohort study and randomized controlled trial). The reference lists of the retrieved full articles were also hand searched. Some authors of relevant studies were contacted for additional information. All search and data abstraction were independently performed by at least 2 investigators (C.L.S., J.-E.K., S.S.-H.C., G.M.G.). When 2 reviewers disagreed, a third investigator was called in, and consensus was reached.

Independent quality assessment of the included studies was performed according to a modified Newcastle-Ottawa scale by 2 investigators (G.J.H., S.S.-H.C). In areas of disagreement, a third investigator (G.M.G.) was consulted, and consensus was achieved after discussion.

For randomized controlled trials, 5 criteria were used for assessment: (1) randomization described, (2) allocation concealment reported, (3) intention-to-treat analysis performed, (4) blinded assessment stated, and (5) a priori power calculation performed.

For cohort and cross-sectional studies, these criteria were used: (1) representative sample of adequate size, (2) well-matched samples, (3) adjustment for confounders in analyses, (4) blinded assessment stated, and (5) dropouts reported (for prospective studies only).

One point was given to each criterion if fulfilled. Half a point was granted if part of the criterion was met. Studies with less than 2 points were considered to be at high risk for bias; from 2 to less than 4 points, the risk for bias was considered moderate; and for 4 points and above, the risk of bias was considered low. All quality ratings have limitations, and our intention was to provide a relative scale to judge the quality of the studies, by using the parameters stated above.

Meta-analysis

A meta-analysis was performed to combine comparable results in each category by using Review Manager (version 5.0, Copenhagen: Nordic Cochrane Centre, Cochrane Collaboration, 2008). Heterogeneity was assessed among the included studies. Results with less heterogeneity (I^2 statistics <75%) were presented with a fixedAmerican Journal of Orthodontics and Dentofacial Orthopedics Volume 137, Number 6

Fig 1. Flow diagram of literature search.

effects model, whereas results with $I^2 > 75\%$ utilized a random-effects model. Weighted mean differences were used to construct forest plots of treatment time, occlusal index scores, and other continuous data. Odds ratios were used for dichotomous data. Publication bias was assessed with funnel plots, if possible.

RESULTS

The electronic searches identified 114 titles and abstracts. From these, 22 full articles were retrieved for review. Ultimately, 16 articles met the inclusion criteria, including 1 article added from hand searching, 1 article added from contacting an author,²² 1 article published during this review,²³ and another identified by contacting an expert in the field¹⁷ (Fig 1). Characteristics of the excluded articles are listed in Appendix 2.

The 16 studies included 2 randomized controlled trials,^{23,24} 10 cohort studies (7 prospective,^{22,25-30} 3 retrospective^{12,13,31}), and 4 cross-sectional studies.^{14,15,17,32} All included articles were published in English, except for 1 in Chinese. Characteristics of the included studies are shown in the Table. Most samples comprised adolescent subjects.

Of the 16 studies, 4 were judged to have a low risk of bias, 8 were categorized as having moderate risk, and 4 were considered to have high risk (Table; Appendix 3). The 4 studies with low risk of bias were the 2 randomized controlled trials^{23,24} and the 2 prospective cohort studies.^{22,30} Most other cohort studies were judged to have moderate risk of bias, and those with high risk of bias were mainly cross-sectional studies.^{14,15,17}

The studies were further divided into 3 categories based on the aspects of self-ligating brackets that were investigated: efficiency, effectiveness, and stability.

Author	Year	Design	Self-ligating group (number of patients)	Conventional group (number of patients)	Pretreatment mean age (y)	Authors' conclusions	Risk of bias
Berger and Byloff ¹⁴	2001	Cross-sectional	SPEED (20) (Strite Industries) Damon SL (20) (Ormco/"A" Company) Time (20) (Adenta) Twinlock (20) (Ormco/"A" Company)	Mini-twin (40) (Ormco/"A" Company)	Not reported	Total opening and closing time was significantly less for each of the 4 SL designs compared with conventional brackets; SPEED took the least average time and Damon SL the most.	High
Eberting et al ¹²	2001	Retrospective cohort	Damon SL (108) (SDS Ormco)	Type not specified (107)	Not reported	Patients treated with Damon SL had significantly lower treatment times, required significantly fewer appointments, and had significantly higher American Board of Orthodontics scores than those treated with conventionally ligated edgewise brackets.	Moderate
Fleming et al ²³	2009	Randomized controlled trial	SmartClip (32) (3M Unitek)	Victory (33) (3M Unitek)	SmartClip: 15.9 Victory: 16.6	In nonextraction patients with mild mandibular incisor crowding, the SL system used was no more effective at relieving irregularity. Enhanced resolution of irregularity was positively correlated with pretreatment irregularity.	Low
Hamilton et al ³¹	2008	Retrospective cohort	In-Ovation (379) (GAC International)	Victory (383) (3M Unitek)	Not reported	Active SL brackets appear to offer no measurable advantages in treatment time, number of visits, and time spent in initial alignment over conventional preadjusted orthodontic brackets. The number of debonded brackets and other emergency visits were significantly higher in patients treated with active	Moderate
Harradine ¹³	2001	Retrospective cohort	Damon SL (30) (SDS Ormco) (study on speed of ligation: n = 50) (study on bracket complications: n = 25)	Type not specified (30) (study on speed of ligation: n = 50) (study on bracket complications: n = 25)	Not reported	Treatment times were 4 months shorter and required 4 fewer visits on average in the Damon group. Slide opening and closure were significantly faster than with conventional ligation. Both types of brackets produced good and equivalent reductions in occlusal irregularity.	Moderate

Table. Characteristics of included studies (detailed quality information in Appendix 3)

Table. Continued

Author	Year	Design	Self-ligating group (number of patients)	Conventional group (number of patients)	Pretreatment mean age (y)	Authors' conclusions	Risk of bias
Jiang and Fu ²⁵	2008	Prospective cohort	Damon3 (13) (SDS Ormco) (mandibular incisor torque: -1°)	Conventional metal preadjusted brackets (13) (Shinya, China) (mandibular incisor torque: -1°)	Damon3: 14.5 Conventional: 15.3	In patients with crowding treated without extractions, there were overall increases in the proclination of the mandibular incisors and arch widths in both groups. Patients treated with Damon3 had greater intermolar width increases than those treated with conventional appliances	High
Maijer and Smith ¹⁵	1990	Cross-sectional	Activa (14) ("A" Company)	Straight-wire brackets (14) ("A" Company)	Not reported	Reduced chair time was a significant advantage of SL brackets. The operator's training made little difference in speed, at least with anterior brackets.	High
Miles ²⁶	2005	Prospective cohort	SmartClip (29) (3M Unitek)	Victory MBT (29) (3M Unitek)	17.1	SmartClip was no more effective at reducing irregularity during the initial stage of treatment than a conventional twin bracket.	Moderate
Miles et al ²⁸	2006	Prospective cohort (Split-mouth design)	Damon2 (58) (SDS Ormco)	Victory MBT (58) (3M Unitek)	16.3	The Damon2 was no better during initial alignment than a conventional bracket. Damon2 had a higher bracket failure rate	Moderate
Miles ²⁷	2007	Prospective cohort (split-mouth design)	SmartClip (14) (3M Unitek)	Conventional MBT twin (14) (3M Unitek)	13.1 (median)	No significant difference in the rate of en-masse space closure between SmartClip brackets and conventional twin brackets tied with stainless steel ligatures was found	Moderate
Paduano et al ¹⁷	2008	Cross-sectional	SmartClip (10) (3M Unitek) In-Ovation (10) (GAC International) Time2 (10) (American Orthodontics)	GAC Ovation with stainless steel ligatures (10) GAC Ovation with elastic ligatures (10) (GAC International)	Not reported (age range, 12-30 y)	SL systems showed quicker and more efficient wire removal and placement for late orthodontic treatment phases. The ligation time in the mandibular arch was affected by the type of SL ampliance used	High
Pandis et al ²⁹	2006	Prospective cohort	Damon2 (43) (SDS Ormco)	Microarch (19) (GAC International)	14	No significant difference in failure incidence was noted between SL and edgewise brackets bonded with either conventional acid etching or self- etching primer in either arch.	Moderate

Author	Year	Design	Self-ligating group (number of patients)	Conventional group (number of patients)	Pretreatment mean age (y)	Authors' conclusions	Risk of bias
Pandis et al ³⁰	2007	Prospective cohort	Damon2 (27) (SDS Ormco) (mandibular incisor torque: -6°)	Microarch (27) (GAC International) (mandibular incisor torque: -1°)	Damon2: 13.5 Microarch: 13.9	No significant difference in the time required to correct mandibular crowding was found between the 2 groups. However, for an irregularity index value <5, self-ligating had 2.7 times faster correction. There were overall increases in mandibular incisor proclination and intercanine width for both groups after alignment, with no significant difference between the groups. The self-ligating group had a statistically greater intermolar width increase.	Low
Pandis et al ²²	2009	Prospective cohort (completion of part of 2007 study)	Damon2 (27) (SDS Ormco) (mandibular incisor torque: -6°)	Microarch (27) (GAC International) (mandibular incisor torque: -1°)	Damon2: 13.6 Microarch: 13.9	There were overall increases in mandibular incisor proclination and intercanine width for both groups after treatment, with no significant difference between the groups. The self-ligating group had a statistically greater intermolar width increase after treatment.	Low
Scott et al ²⁴	2008	Randomized controlled trial	Damon3 (32) (SDS Ormco) (mandibular incisor torque: -1°)	Synthesis (28) (SDS Ormco) (mandibular incisor torque: -1°)	Damon3: 16.2 Synthesis: 16.4	Damon3 was no more efficient than conventional ligated preadjusted brackets in initial or overall rate of mandibular incisor alignment. Alignment was associated with increased intercanine width, maintenance of intermolar width, some reduction of arch length, and proclination of mandibular incisors for both appliances, but the differences were not significant.	Low
Turnbull and Birnie ³²	2007	Cross-sectional	Damon2 (140) (SDS Ormco)	Orthos (122) (SDS Ormco)	Damon2: 13.7 Orthos: 14.4	Damon2 had a significantly shorter mean archwire ligation time for both removing and placing wires.	Moderate

Table. Continued

SL, Self-ligating.

Eleven studies had results that could be used for metaanalyses.^{12,13,22,24-26,28-32}

Eleven studies investigating the efficiency of selfligating brackets compared with conventional brackets were identified, ^{12-15,17,26-29,31,32} and 7 reported results that could be pooled for analysis. The outcomes studied included total treatment time, rate of mandibular incisor alignment, rate of en-masse space closure, number of visits, chair time, and bracket failure rate. Figure 2 (comparisons 1.1-1.7) shows the results of the meta-analysis from 7 eligible studies. Among all the outcomes, only chair time required for opening the slides of the self-ligating brackets or removing the conventional ligatures showed a significant difference between the 2 groups (P < 0.00001). It took 20 seconds less to open the self-ligating brackets per arch than removing the ligatures in the conventional group.

Seven studies investigating the effectiveness of selfligating brackets compared with conventional brackets were identified.^{12,13,22,24,25,30,31} The outcomes that had been studied included occlusal indices, arch dimensions, and mandibular incisor inclinations after incisor alignment or at the end of treatment. Figure 3 (comparisons 2.1-2.4) shows the results of the meta-analysis from these 7 studies. No statistically significant difference was observed between the 2 groups in any outcome category, except for change in mandibular incisor proclination. The self-ligating bracket systems resulted in 1.5° less incisor proclination than the conventional bracket systems.

At this time, no studies comparing the stability of treatment result with self-ligating brackets to conventional brackets were identified.

We intended to assess publication bias, but the small number of studies for each outcome of interest were too few to derive meaning from funnel plots.

DISCUSSION

Quality of the studies in this review

We identified 4 pertinent studies with low risk of bias, 8 with moderate risk of bias, and 4 with high risk of bias. Three poor-quality studies were not included in the meta-analysis because of lack of results with proper statistics or methods that were too different to combine. Therefore, the quality of most of the evidence in the meta-analyses is moderate to good. The amount of evidence for each outcome of interest was sparse, with no analysis combining data from more than 3 studies.

Total treatment time and occlusal indices

Three retrospective cohort studies with moderate risk of bias compared total treatment times. Eberting et al¹² and Harradine¹³ found significantly decreased

treatment times of 4 to 6 months and 4 to 7 fewer visits with self-ligating brackets, whereas Hamilton et al³¹ found no significant difference between the 2 groups. However, the mean treatment times varied in the 3 studies, and the decision regarding when treatment goals had been attained might have differed among the investigators. Standardized mean differences were used to minimize methodologic differences among the trials (in this case, to account for considerable differences in total treatment times between the studies), and the synthesized result showed no significant difference.

The same 3 studies also compared the occlusal outcome after treatment. Eberting et al¹² used American Board of Orthodontics scores, Hamilton et al³¹ used the index of complexity, outcome, and need, and Harradine¹³ used the peer assessment rating. Interestingly, an almost identical pattern was observed in the 2 forest plots. The 2 smaller studies with passive self-ligating brackets (Damon, Ormco) favored self-ligation,^{12,13} whereas the larger study with active self-ligating brackets (In-Ovation, GAC) found no significant difference.³¹ The difference in treatment efficiency between passive and active self-ligating brackets requires further investigation. To synthesize the 3 different scores (all were deductions from the full score), standardized mean differences were calculated. The results in occlusal quality showed no significant difference at the end of treatment. Caution should be used regarding these results, since the heterogeneity was high and the 3 studies might have been susceptible to bias from their retrospective designs.

Studies with randomized or consecutive assignment are needed to provide further information. A standardized stopping rule and a blinded assessor for completion of treatment would result in more valid comparisons of treatment durations.

Rate of alignment and space closure

Five studies with low to moderate risk of bias, including 2 randomized controlled trials and 3 prospective cohort studies, investigated the rate of mandibular incisor alignment. All self-ligating brackets were the passive type (Damon, Ormco; SmartClip, 3M Unitek). Pandis et al^{22,30} and Scott et al²⁴ reported days needed for alignment but used different end points: visual inspection of correction of proximal contacts and changing to 0.019×0.025 -in stainless steel archwire. Pandis et al^{22,30} enrolled nonextraction patients, whereas Scott et al enrolled extraction patients. Miles²⁶ and Fleming et al²³ reported reduction of irregularity at various times of alignment. A standardized mean difference was calculated, and no significant difference in efficiency of alignment in the mandibular

Comparison 1.1. Total treatment time (in month), presented in standardized mean difference

	Self-ligating			Conv	ention	nal	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Eberting 2001	24.5	6.5	108	30.9	7.9	107	34.4%	-0.88 [-1.16, -0.60]	_ _
Hamilton 2008	15.6	5.2	379	15.9	6.1	383	36.2%	-0.05 [-0.19, 0.09]	
Harradine 2001	19.4	5.9	30	23.5	5.2	30	29.4%	-0.73 [-1.25, -0.20]	
Total (95% CI)			517			520	100.0%	-0.54 [-1.17, 0.09]	
Heterogeneity: Tau ² =	0.28; Ch	-1 -0.5 0 0.5 1							
l est for overall effect.	Z = 1.67	(P = (J.10)						Favours self-ligating Favours conventional

Comparison 1.2. Rate of mandibular incisor alignment (days needed), presented in standardized mean difference

	Self-ligating			Con	ventio	nal		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Pandis 2007	91	31.9	27	114.5	46.4	27	46.4%	-0.58 [-1.13, -0.04]	
Scott 2008	253	63.6	32	243	82.5	28	53.6%	0.14 [-0.37, 0.64]	
Total (95% CI)			59			55	100.0%	-0.20 [-0.57, 0.17]	-
Heterogeneity: Chi ² =	3.55, df	= 1 (P	= 0.06)	; l ² = 72	%				
Test for overall effect:	Z = 1.04	(P=0	0.30)						Favours self-ligating Favours conventional

Comparison 1.3. Rate of mandibular incisor alignment (change of irregularity index at 10 weeks of alignment), presented in standardized mean difference

	Self-ligating			Conv	entio	nal		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Miles 2005	-3.4	2.5	29	-4.2	3	29	33.1%	0.29 [-0.23, 0.80]	
Miles 2006	-1.2	1.5	58	-1.4	1.7	58	66.9%	0.12 [-0.24, 0.49]	
Total (95% CI) Heterogeneity: Chi ² = Test for overall effect.	0.25, df = Z = 1.17	= 1 (P (P = 1	87 = 0.62) 0.24)	; l² = 0%		87	100.0%	0.18 [-0.12, 0.48]	-1 -0.5 0 0.5 1 Favours self-ligating Favours conventional

Comparison 1.4. Rate of mandibular incisor alignment (change of irregularity index at 20 weeks of alignment), presented in standardized mean difference

	Self-ligating			Conventional				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Miles 2005	-4.3	2.7	29	-4.4	2.9	29	33.3%	0.04 [-0.48, 0.55]	_
Miles 2006	-1.4	1.5	58	-1.5	1.8	58	66.7%	0.06 [-0.30, 0.42]	
Total (95% CI)			87			87	100.0%	0.05 [-0.25, 0.35]	-
Heterogeneity: Chi2 =	0.01, df =	1 (P	= 0.94)	; l² = 0%					_1 _05 0 05 1
Test for overall effect	Z = 0.34	(P = (0.73)						Favours self-ligating Favours conventional

Comparison 1.5. Time required for opening slides of self-ligating brackets or removing conventional ligatures (second/arch)

	Self-	gating Conventional					Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl		
Harradine 2001	15.4	3.9	100	31.6	11.1	100	51.7%	-16.20 [-18.51, -13.89]	-		
Turnbull 2007	39.8	13	140	64.5	18	122	48.3%	-24.70 [-28.55, -20.85]			
Total (95% CI)			240			222	100.0%	-20.30 [-28.63, -11.98]	-		
Heterogeneity: Tau ² = :	33.50; Cl	-20 -10 0 10 20									

Comparison 1.6. Time required for closing slides of self-ligating brackets or replacing conventional ligatures (second/arch)

	Self-ligating			Conv	ventio	nal		Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl			
Harradine 2001	59.4	24.7	100	68.8	11.4	100	50.0%	-9.40 [-14.73, -4.07]	-			
Turnbull 2007	46.3	22	140	98.4	24	122	50.0%	-52.10 [-57.71, -46.49]	-			
Total (95% CI)			240			222	100.0%	-30.74 [-72.59, 11.10]				
Heterogeneity: Tau ² = Test for overall effect.	903.86; Z = 1.44	Chi² = (P = 0	117.04 0.15)	l, df = 1	(P < 0.	.00001)	; I² = 99%		-50 -25 0 25 5 Favours self-ligating Favours conve	i0 entional		

Comparison 1.7. Bracket failure rate

	Self-liga	ating	Convent	ional		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
Miles 2006	26	283	5	278	48.8%	5.52 [2.09, 14.60]	
Pandis 2006	19	849	11	371	51.2%	0.75 [0.35, 1.59]	
Total (95% CI)		1132		649	100.0%	1.99 [0.27, 14.46]	
Total events	45		16				
Heterogeneity: Tau ² =	1.86; Chi ²	= 10.44	, df = 1 (P	= 0.001			
Test for overall effect:	Z = 0.68 (F	P = 0.50)				Favours self-ligating Favours conventional

Fig 2. Comparison of efficiency: self-ligating vs conventional brackets.

Comparison 2.1. Occlusal indices at the end of treatment (deductions from full score), presented in standardized mean difference

	Self-ligating			Conv	entio	nal	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Eberting 2001	30	8.9	108	38	11.4	107	34.7%	-0.78 [-1.06, -0.50]	
Hamilton 2008	48	20.4	379	49.9	19.6	383	37.7%	-0.09 [-0.24, 0.05]	
Harradine 2001	5.6	3.2	30	7	3.2	30	27.6%	-0.43 [-0.94, 0.08]	
Total (95% CI)			517			520	100.0%	-0.43 [-0.93, 0.07]	
Heterogeneity: Tau ² =	0.17; Cł								
Test for overall effect: Z = 1.67 (P = 0.09)									Favours self-ligating Favours conventional

Comparison 2.2. Change of intercanine width, positive mean means expansion

	Self-ligating			Conv	entio	nal		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	IV, Fixed, 95% CI	
Jiang 2008	0.6	1.6	13	1.1	2.4	13	13.9%	-0.50 [-2.07, 1.07]		
Pandis 2009	1.6	1.3	27	1.9	1.5	27	61.0%	-0.30 [-1.05, 0.45]		
Scott 2008	2.6	2.3	32	2.7	2.3	28	25.1%	-0.10 [-1.27, 1.07]		
Total (95% CI)			72			68	100.0%	-0.28 [-0.86, 0.31]		
Heterogeneity: Chi ² = Test for overall effect:	0.17, df = Z = 0.93	= 2 (P (P = 0	= 0.92) 0.35)); I² = 0%					-2 -1 0 1 Favours self-ligating Favours convention	⊢ 2 al

Comparison 2.3. Change of intermolar width, positive mean means expansion

	Self-ligating			Conventional			Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Jiang 2008	1.4	0.8	13	0.7	1.3	13	34.5%	0.70 [-0.13, 1.53]			
Pandis 2009	2.4	1.5	27	1	1.2	27	36.1%	1.40 [0.68, 2.12]			
Scott 2008	-0.1	2.4	32	0.6	2.1	28	29.4%	-0.70 [-1.84, 0.44]			
Total (95% CI)			72			68	100.0%	0.54 [-0.56, 1.64]			
Heterogeneity: Tau ² = 0.74; Chi ² = 9.33, df = 2 (P = 0.009); l ² = 79%											
Test for overall effect: Z = 0.96 (P = 0.33)									Favours self-ligating Favours conventional		

Comparison 2.4. Change of Incisor inclination (L1-MP), positive mean means proclination

	Self-ligating			Conventional			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
Jiang 2008	9.9	5.4	13	9.2	9	13	5.5%	0.70 [-5.01, 6.41]		
Pandis 2009	3.1	2.8	27	5.6	4.2	27	49.0%	-2.50 [-4.40, -0.60]		
Scott 2008	1.7	4.1	32	2.3	3.7	28	45.6%	-0.60 [-2.57, 1.37]		
Total (95% CI)			72			68	100.0%	-1.46 [-2.79, -0.13]	•	
Heterogeneity: Chi² = 2.43, df = 2 (P = 0.30); l² = 18%										
Test for overall effect: Z = 2.15 (P = 0.03)									Favours self-ligating Favours conventional	

Fig 3. Comparison of effectiveness: self-ligating vs conventional brackets.

arch was found. The efficiency of alignment was found to be associated with initial irregularity only. The study of Fleming et al²³ was not included in the meta-analysis because of the 3-dimensional analysis that they used. However, they also concluded that, for nonextraction patients with mild mandibular incisor crowding, self-ligating brackets were no more effective at relieving irregularity.

The other study by Miles²⁷ addressed the efficiency of space closure. This was a prospective cohort study with a split-mouth design with moderate risk of bias. It concluded that there was no significant difference in the rate of en-masse space closure between SmartClip brackets and conventional brackets tied with stainless steel ligatures. However, the sample size was small, and the possibility that any true difference could be obscured in a split-mouth design should be considered.

Existing evidence does not support the claim that lower friction in a self-ligating system permits faster alignment or space closure in a clinical setting.

Chair time

Five cross-sectional studies comparing chair time were identified. Only 2 studies had similar methods and adequate statistics to allow pooling of the data for meta-analysis.^{13,23} The results showed a mean savings of 20 seconds per arch for opening the slides of Damon brackets compared with removing the ligatures of conventional brackets. However, there was no significant difference between the time needed for closing the slides of Damon brackets of Damon brackets. The other studies not included in the meta-analysis suggested decreased chair time with self-ligating brackets.^{14,15,17}

Arch dimension and lower incisor inclination

Three studies investigated arch dimensions and mandibular incisor inclinations. Jiang and Fu²⁵ and Pandis et al^{22} reported the changes after treatment in their prospective studies, and Scott et al^{24} reported the change after progressing to 0.019 × 0.025-in stainless steel archwires in a randomized controlled trial. All 3 studies used Damon brackets in the self-ligating group. For intercanine and intermolar widths, there was no significant difference between the 2 groups. For incisor proclination, the meta-analysis indicated that self-ligating brackets resulted in slightly less incisor proclination (1.5°).

Subjects in the studies of Jiang et al²⁵ and Pandis et al²² were all treated without extractions, while Scott et al²⁴ reported on extraction patients with greater incisor irregularity at the beginning of the treatment. Scott et al reported greater increases in intercanine width, probably because the canines were retracted to a wider part of the arch. Intermolar width was not increased with self-ligating brackets in that study, and, according to the authors, it was probably related to forward sliding of the molars into a narrower part of the arch in the extraction patients.²⁴ In addition, different archwire sequences were used for the 2 groups in the studies of Jiang and Fu²⁵ and Pandis et al,²² whereas Scott et al²⁴ used the same archwires for both groups. These results suggest that self-ligating and conventional appliances resolve crowding with a similar mechanism, since the only statistically significant finding was the 1.5° difference in incisor proclination. The claims that self-ligating brackets facilitate greater and more physiologic arch expansion and, therefore, allow more nonextraction treatment require more evidence.

Bracket failure rate

Four studies investigating bracket failures were identified.^{13,28,29,31} Only Miles et al²⁸ and Pandis et al²⁹ reported the percentages of failed brackets and had results that could be pooled. These 2 studies were both prospective with moderate risks of bias. The meta-analysis showed no significant differences in the bracket failures rates between the 2 groups. However, heterogeneity was high, and the 2 studies suggested conflicting results, with Pandis et al²⁹ favoring selfligating brackets, and Miles et al²⁸ favoring conventional brackets. Pandis et al included first-time failures only. Also, the durations were different between the 2 studies. The study of Hamilton et al³¹ was not included in the meta-analysis but also showed a higher percentage of patients experiencing bracket failures and more mean failures per person with self-ligating brackets. Self-ligating brackets usually have a smaller base and a thicker profile than do conventional brackets. Therefore, it was postulated that the increased failure rate with self-ligating brackets might have been due to the smaller base and the higher profile, especially in the mandibular posterior teeth.³³ However, no significant difference was found from the meta-analysis.

Stability

Some claim that lower forces produced by selfligating bracket systems might result in more physiologic tooth movement and more stable treatment results. However, studies on stability after treatment with self-ligating brackets are lacking at this time.

CONCLUSIONS

Despite claims regarding the clinical superiority of self-ligating brackets, evidence is generally lacking.

Self-ligation does appear to have a significant advantage with regard to chair time, based on several crosssectional studies. Analyses also showed a small, but statistically significant, difference in mandibular incisor proclination (1.5°) less proclination with self-ligating brackets compared with conventional brackets). No other significant differences in treatment time or occlusal characteristics after treatment were found. No studies on long-term stability of treatment met our inclusion criteria. Well-matched or randomized subjects, protocols for identifying the end of treatment, and blinded assessors for outcome measurements are important factors for future studies to minimize potential biases.

We thank Terry Ann Jankowski, Head Librarian, Information and Education Services, University of Washington Health Sciences Library, Seattle, for her assistance in database searching, and Kuang-Dah Yeh for his assistance in quality assessment.

REFERENCES

- Stolzenberg J. The Russell attachment and its improved advantages. Int J Orthod Dent Child 1935;21:837-40.
- Damon DH. The rationale, evolution and clinical application of the self-ligating bracket. Clin Orthod Res 1998;1:52-61.
- Damon DH. The Damon low-friction bracket: a biologically compatible straight-wire system. J Clin Orthod 1998;32:670-80.
- Berger JL. The SPEED system: an overview of the appliance and clinical performance. Semin Orthod 2008;14:54-63.
- Griffiths HS, Sherriff M, Ireland AJ. Resistance to sliding with 3 types of elastomeric modules. Am J Orthod Dentofacial Orthop 2005;127:670-5.
- Henao SP, Kusy RP. Frictional evaluations of dental typodont models using four self-ligating designs and a conventional design. Angle Orthod 2005;75:75-85.
- Khambay B, Millett D, McHugh S. Evaluation of methods of archwire ligation on frictional resistance. Eur J Orthod 2004; 26:327-32.
- Kim TK, Kim KD, Baek SH. Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system. Am J Orthod Dentofacial Orthop 2008;133: 187.e15-24.
- Budd S, Daskalogiannakis J, Tompson BD. A study of the frictional characteristics of four commercially available selfligating bracket systems. Eur J Orthod 2008;30:645-53.
- Berger JL. The influence of the SPEED bracket's self-ligating design on force levels in tooth movement: a comparative in vitro study. Am J Orthod Dentofacial Orthop 1990;97:219-28.
- Harradine NW. Self-ligating brackets: where are we now? J Orthod 2003;30:262-73.
- Eberting JJ, Straja SR, Tuncay OC. Treatment time, outcome, and patient satisfaction comparisons of Damon and conventional brackets. Clin Orthod Res 2001;4:228-34.
- Harradine NW. Self-ligating brackets and treatment efficiency. Clin Orthod Res 2001;4:220-7.
- Berger J, Byloff FK. The clinical efficiency of self-ligated brackets. J Clin Orthod 2001;35:304-8.

- Maijer R, Smith DC. Time savings with self-ligating brackets. J Clin Orthod 1990;24:29-31.
- Shivapuja PK, Berger J. A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 1994;106:472-80.
- Paduano S, Cioffi I, Iodice G, Rapuano A, Silva R. Time efficiency of self-ligating vs conventional brackets in orthodontics: effect of appliances and ligating systems. Prog Orthod 2008;9: 74-80.
- Forsberg CM, Brattstrom V, Malmberg E, Nord CE. Ligature wires and elastomeric rings: two methods of ligation, and their association with microbial colonization of Streptococcus mutans and lactobacilli. Eur J Orthod 1991;13:416-20.
- Badawi HM, Toogood RW, Carey JP, Heo G, Major PW. Torque expression of self-ligating brackets. Am J Orthod Dentofacial Orthop 2008;133:721-8.
- Pizzoni L, Ravnholt G, Melsen B. Frictional forces related to self-ligating brackets. Eur J Orthod 1998;20:283-91.
- Sims AP, Waters NE, Birnie DJ, Pethybridge RJ. A comparison of the forces required to produce tooth movement in vitro using two self-ligating brackets and a pre-adjusted bracket employing two types of ligation. Eur J Orthod 1993;15:377-85.
- 22. Pandis NP, Polychronopoulou A, Makou M, Eliades T. Mandibular dental arch changes associated with treatment of crowding using self-ligating and conventional brackets. Eur J Orthod 2009; e-pub ahead of print.
- Fleming PS, DiBiase AT, Sarri G, Lee RT. Efficiency of mandibular arch alignment with 2 preadjusted edgewise appliances. Am J Orthod Dentofacial Orthop 2009;135:597-602.
- Scott P, DiBiase AT, Sherriff M, Cobourne MT. Alignment efficiency of Damon3 self-ligating and conventional orthodontic bracket systems: a randomized clinical trial. Am J Orthod Dentofacial Orthop 2008;134:470.e1-8.
- Jiang RP, Fu MK. Non-extraction treatment with self-ligating and conventional brackets. Zhonghua Kou Qiang Yi Xue Za Zhi 2008;43:459-63.
- Miles PG. SmartClip versus conventional twin brackets for initial alignment: is there a difference? Aust Orthod J 2005;21:123-7.
- Miles PG. Self-ligating vs conventional twin brackets during en-masse space closure with sliding mechanics. Am J Orthod Dentofacial Orthop 2007;132:223-5.
- Miles PG, Weyant RJ, Rustveld L. A clinical trial of Damon 2 vs conventional twin brackets during initial alignment. Angle Orthod 2006;76:480-5.
- Pandis N, Polychronopoulou A, Eliades T. Failure rate of selfligating and edgewise brackets bonded with conventional acid etching and a self-etching primer: a prospective in vivo study. Angle Orthod 2006;76:119-22.
- 30. Pandis N, Polychronopoulou A, Eliades T. Self-ligating vs conventional brackets in the treatment of mandibular crowding: a prospective clinical trial of treatment duration and dental effects. Am J Orthod Dentofacial Orthop 2007;132:208-15.
- Hamilton R, Goonewardene MS, Murray K. Comparison of active self-ligating brackets and conventional pre-adjusted brackets. Aust Orthod J 2008;24:102-9.
- Turnbull NR, Birnie DJ. Treatment efficiency of conventional vs self-ligating brackets: effects of archwire size and material. Am J Orthod Dentofacial Orthop 2007;131:395-9.
- Harradine NW, Birnie DJ. The clinical use of Activa selfligating brackets. Am J Orthod Dentofacial Orthop 1996;109: 319-28.
- Agarwal S, Valiathan A, Shah NV. Self-ligating brackets. Am J Orthod Dentofacial Orthop 2008;134:5.

- Baccetti T, Franchi L. Friction produced by types of elastomeric ligatures in treatment mechanics with the preadjusted appliance. Angle Orthod 2006;76:211-6.
- Baek SH, Kim NY, Paeng JY, Kim MJ. Trifocal distractioncompression osteosynthesis in conjunction with passive selfligating brackets for the reconstruction of a large bony defect and multiple missing teeth. Am J Orthod Dentofacial Orthop 2008;133:601-11.
- Baek SH. Author's response. Am J Orthod Dentofacial Orthop 2008;134:5-6.
- Bednar JR, Gruendeman GW. The influence of bracket design on moment production during axial rotation. Am J Orthod Dentofacial Orthop 1993;104:254-61.
- Bednar JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 1991;100:513-22.
- Berger J. The engaging concept of self-ligation. Ont Dent 1999; 76:26-33.
- Berger JL. The SPEED appliance: a 14-year update on this unique self-ligating orthodontic mechanism. Am J Orthod Dentofacial Orthop 1994;105:217-23.
- Blake M, Woodside DG, Pharoah MJ. A radiographic comparison of apical root resorption after orthodontic treatment with the edgewise and Speed appliances. Am J Orthod Dentofacial Orthop 1995;108:76-84.
- Bortoly TG, Guerrero AP, Rached RN, Tanaka O, Guariza-Filho O, Rosa EA. Sliding resistance with esthetic ligatures: an in-vitro study. Am J Orthod Dentofacial Orthop 2008;133:340. e1-7.
- 44. Breuning KH. Correction of a Class III malocclusion with over 20 mm of space to close in the maxilla by using miniscrews for extra anchorage. Am J Orthod Dentofacial Orthop 2008; 133:459-69.
- 45. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop 2003;124:395-402.
- Chalgren R, Combe EC, Wahl AJ. Effects of etchants and primers on shear bond strength of a self-ligating esthetic orthodontic bracket. Am J Orthod Dentofacial Orthop 2007;132: 577.e1-5.
- Champagne M, Lavallée JN, Huynh P, Martel D, Pellan P. The low friction contradiction (low friction or fiction). Int J Orthod Milwaukee 2007;18:11-6.
- Deguchi T, Imai M, Sugawara Y, Ando R, Kushima K, Takano-Yamamoto T. Clinical evaluation of a low-friction attachment device during canine retraction. Angle Orthod 2007;77:968-72.
- Elayyan F, Silikas N, Bearn D. Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 2008; 30:661-7.
- Elekdag-Turk S, Cakmak F, Isci D, Turk T. 12-month selfligating bracket failure rate with a self-etching primer. Angle Orthod 2008;78:1095-100.
- Eliades T. Author's response. Am J Orthod Dentofacial Orthop 2008;133:6-7.
- 52. Eliades T. Re: Response from Dr Eliades—failure rate of self ligating and edgewise brackets bonded with conventional acid etching and a self etching primer: a prospective in vivo study (Angle Orthod 2006;76:119-22). Angle Orthod 2006; 76(5):iii.
- Eliades T, Bourauel C. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop 2005;127:403-12.

- Ellis CP. Self-ligating brackets. Am J Orthod Dentofacial Orthop 2008;133:4-5; author's response, 5.
- 55. Fleming PS, Dibiase AT, Sarri G, Lee RT. Pain experience during initial alignment with a self-ligating and a conventional fixed orthodontic appliance system. A randomized controlled clinical trial. Angle Orthod 2009;79:46-50.
- 56. Fleming PS, DiBiase AT, Lee RT. Self-ligating appliances: evolution or revolution? Aust Orthod J 2008;24:41-9.
- Franchi L, Baccetti T, Camporesi M, Barbato E. Forces released during sliding mechanics with passive self-ligating brackets or nonconventional elastomeric ligatures. Am J Orthod Dentofacial Orthop 2008;133:87-90.
- Gandini P, Orsi L, Bertoncini C, Massironi S, Franchi L. In vitro frictional forces generated by three different ligation methods. Angle Orthod 2008;78:917-21.
- Garino F, Garino GB. Distalization of maxillary molars using the Speed system: a clinical and radiological evaluation. World J Orthod 2004;5:317-23.
- Garino F, Favero L. Control of tooth movements with the Speed system. Prog Orthod 2003;4:23-30.
- Giancotti A, Greco M. Technique clinic: a bondable power arm for self-ligating brackets. J Clin Orthod 2008;42:476.
- Giancotti A, Greco M. The G-spring: a bondable uprighting spring for self-ligating brackets. J Clin Orthod 2008;42:98-9.
- Goldbecher H, Grande T, Bock J, Fuhrmann RAW. Clinical experiences with self-ligature bracket systems. Deutsche Zahnarztliche Zeitschrift 2005;60:A175.
- Gottlieb EL, Wildman AJ, Hice TL, Lang HM, Lee IF, Strauch EC Jr. The Edgelok bracket. J Clin Orthod 1972;6: 613-23 passim.
- Hain M, Dhopatkar A, Rock P. A comparison of different ligation methods on friction. Am J Orthod Dentofacial Orthop 2006;130:666-70.
- Hain M, Dhopatkar A, Rock P. The effect of ligation method on friction in sliding mechanics. Am J Orthod Dentofacial Orthop 2003;123:416-22.
- Hayashi K, Uechi J, Lee SP, Mizoguchi I. Three-dimensional analysis of orthodontic tooth movement based on XYZ and finite helical axis systems. Eur J Orthod 2007;29:589-95.
- He Y, Ye Q, Luo J, Zou S, Zhao Z, Ren Y. Interventions for space closure in orthodontic treatment. Cochrane Database of Systematic Reviews. Chichester, United Kingdom: John Wiley & Sons; 2009.
- Hemingway R, Williams RL, Hunt JA, Rudge SJ. The influence of bracket type on the force delivery of Ni-Ti archwires. Eur J Orthod 2001;23:233-41.
- Henao SP, Kusy RP. Evaluation of the frictional resistance of conventional and self-ligating bracket designs using standardized archwires and dental typodonts. Angle Orthod 2004;74: 202-11.
- Janson GR, De Luca Canto G, Martins DR, Henriques JF, De Freitas MR. A radiographic comparison of apical root resorption after orthodontic treatment with 3 different fixed appliance techniques. Am J Orthod Dentofacial Orthop 2000;118:262-73.
- Kao C. Leveling effects of conventional and self-ligating brackets—cases report. J Dent Sci 2007;2:110-26.
- Katsaros C, Dijkman JF. Self-ligating edgewise brackets. An overview. Ned Tijdschr Tandheelkd 2003;110:31-4.
- Kusy RP. Influence on binding of third-order torque to secondorder angulation. Am J Orthod Dentofacial Orthop 2004;125: 726-32.
- Lin JX, Xu TM. History and development of Chinese orthodontics. Beijing Da Xue Xue Bao 2008;40:11-4.

American Journal of Orthodontics and Dentofacial Orthopedics Volume 137, Number 6

- Loftus BP, Årtun J, Nicholls JI, Alonzo TA, Stoner JA. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am J Orthod Dentofacial Orthop 1999;116:336-45.
- Loh KW. Rapid tooth movement with a low-force, low-friction bracket system. J Clin Orthod 2007;41:451-7.
- Macchi A, Tagliabue A, Levrini L, Trezzi G. Philippe selfligating lingual brackets. J Clin Orthod 2002;36:42-5.
- Maijer R, Lamark P. Add color to self-ligating systems while reducing emergencies. J Clin Orthod 2004;38:341.
- Mallory DC, English JD, Powers JM, Brantley WA, Bussa HI. Force-deflection comparison of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop 2004;126: 110-2.
- 82. Matarese G, Nucera R, Militi A, Mazza M, Portelli M, Festa F, et al. Evaluation of frictional forces during dental alignment: an experimental model with 3 nonleveled brackets. Am J Orthod Dentofacial Orthop 2008;133:708-15.
- Menendez M, Alarcon JA, Travesi A. Evaluation of dental arch width and form changes after orthodontic treatment with the Damon system. Proceedings of the International Orthodontic Conference; 2005 Sep 11-15; Paris, France. Chicago: Quintessence, 2005. p. 445.
- Miles PG. Author's response. Am J Orthod Dentofacial Orthop 2008;133:5.
- Montgomery WM. Seating an archwire into a self-ligating bracket for initial alignment. J Clin Orthod 2007;41:20.
- Morina E, Eliades T, Pandis N, Jager A, Bourauel C. Torque expression of self-ligating brackets compared with conventional metallic, ceramic, and plastic brackets. Eur J Orthod 2008;30: 233-8.
- Northrup RG, Berzins DW, Bradley TG, Schuckit W. Shear bond strength comparison between two orthodontic adhesives and self-ligating and conventional brackets. Angle Orthod 2007;77: 701-6.
- Pandis N, Eliades T, Partowi S, Bourauel C. Moments generated during simulated rotational correction with self-ligating and conventional brackets. Angle Orthod 2008;78:1030-4.
- Pandis N, Eliades T, Partowi S, Bourauel C. Forces exerted by conventional and self-ligating brackets during simulated firstand second-order corrections. Am J Orthod Dentofacial Orthop 2008;133:738-42.
- Pandis N, Vlachopoulos K, Polychronopoulou A, Madianos P, Eliades T. Periodontal condition of the mandibular anterior dentition in patients with conventional and self-ligating brackets. Orthod Craniofac Res 2008;11:211-5.
- Pandis N, Nasika M, Polychronopoulou A, Eliades T. External apical root resorption in patients treated with conventional and self-ligating brackets. Am J Orthod Dentofacial Orthop 2008; 134:646-51.
- Pandis N, Strigou S, Eliades T. Maxillary incisor torque with conventional and self-ligating brackets: a prospective clinical trial. Orthod Craniofac Res 2006;9:193-8.
- Pandis N, Bourauel C, Eliades T. Changes in the stiffness of the ligating mechanism in retrieved active self-ligating brackets. Am J Orthod Dentofacial Orthop 2007;132:834-7.
- Park JH, Lee YK, Lim BS, Kim CW. Frictional forces between lingual brackets and archwires measured by a friction tester. Angle Orthod 2004;74:816-24.
- Parkin N. Clinical pearl: clinical tips with System-R. J Orthod 2005;32:244-6.

- Pellan P. Fact or friction: the importance of working with a selfligating bracket system. Int J Orthod Milwaukee 2006;17:51-2.
- Prososki RR, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 1991;100:341-8.
- Razavi MR. Self-ligating brackets. Am J Orthod Dentofacial Orthop 2008;133:5-6; author's response, 6-7.
- Read-Ward GE, Jones SP, Davies EH. A comparison of selfligating and conventional orthodontic bracket systems. Br J Orthod 1997;24:309-17.
- 100. Redlich M, Gorodnev A, Feldman Y, Kaplan-Ashiri I, Tenne R, Fleischer N, et al. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires. J Mater Res 2008; 23:2909-15.
- Redlich M, Mayer Y, Harari D, Lewinstein I. In vitro study of frictional forces during sliding mechanics of "reduced-friction" brackets. Am J Orthod Dentofacial Orthop 2003;124: 69-73.
- Reicheneder CA, Gedrange T, Berrisch S, Proff P, Baumert U, Faltermeier A, et al. Conventionally ligated versus self-ligating metal brackets—a comparative study. Eur J Orthod 2008;30: 654-60.
- Reicheneder CA, Baumert U, Gedrange T, Proff P, Faltermeier A, Muessig D. Frictional properties of aesthetic brackets. Eur J Orthod 2007;29:359-65.
- Rinchuse DJ, Miles PG. Authors' response. Am J Orthod Dentofacial Orthop 2008;133:7.
- 105. Rinchuse DJ, Miles PG. Self-ligating brackets: present and future. Am J Orthod Dentofacial Orthop 2007;132:216-22.
- Rinchuse DJ, Rinchuse DJ, Kapur-Wadhwa R. Orthodontic appliance design. Am J Orthod Dentofacial Orthop 2007;131: 76-82.
- Sakima MT, Dalstra M, Melsen B. How does temperature influence the properties of rectangular nickel-titanium wires? Eur J Orthod 2006;28:282-91.
- Scott P, Sherriff M, Dibiase AT, Cobourne MT. Perception of discomfort during initial orthodontic tooth alignment using a selfligating or conventional bracket system: a randomized clinical trial. Eur J Orthod 2008;30:227-32.
- 109. Sims AP, Waters NE, Birnie DJ. A comparison of the forces required to produce tooth movement ex vivo through three types of pre-adjusted brackets when subjected to determined tip or torque values. Br J Orthod 1994;21:367-73.
- 110. Sivakumar A, Gandhi S, Valiathan A. Re: failure rate of self ligating and edgewise brackets bonded with conventional acid etching and a self etching primer: a prospective in vivo study. Angle Orthod 2006;76:119-22. Angle Orthod 2006;76(5):iii; author reply, iii.
- 111. Smith J, Bearn DR, House K. Self-ligating orthodontic braces for straightening teeth. Cochrane Database of Systematic Reviews. Chichester, United Kingdom: John Wiley & Sons; 2008.
- Southard TE, Marshall SD, Grosland NM. Friction does not increase anchorage loading. Am J Orthod Dentofacial Orthop 2007;131:412-4.
- 113. Tecco S, Di Iorio D, Cordasco G, Verrocchi I, Festa F. An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur J Orthod 2007;29:390-7.
- 114. Tecco S, Festa F, Caputi S, Traini T, Di Iorio D, D'Attilio M. Friction of conventional and self-ligating brackets using a 10 bracket model. Angle Orthod 2005;75:1041-5.
- 115. Thermac G, Morgon L, Godeneche J. Friction: self-ligating brackets. Orthod Fr 2008;79:239-49.

- 116. Thomas S, Sherriff M, Birnie D. A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of pre-adjusted edgewise brackets tied with elastomeric ligatures. Eur J Orthod 1998;20:589-96.
- 117. Thorstenson GA, Kusy RP. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with secondorder angulation in the dry state. Am J Orthod Dentofacial Orthop 2002;122:295-305.
- 118. Thorstenson GA, Kusy RP. Comparison of resistance to sliding between different self-ligating brackets with second-order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 2002;121:472-82.
- 119. Thorstenson GA, Kusy RP. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am J Orthod Dentofacial Orthop 2001;120:361-70.
- Thorstenson GA, Kusy RP. Self-ligating brackets: friction in the passive and active configurations. J Dent Res 2000;79:36-46.
- 121. Torres CB, Cabrilla MCP, Quintanilla DS. Comparative assessment of the effectiveness of dental alignment between low friction conventional ligated and self-closing brackets on the maxillary arch in 18 patients. Proceedings of the European Orthodontic Society; 2005 Jun 3-7; Amsterdam, The Netherlands. London: European Orthodontic Society; 2005. p. 294.

- 122. van Aken CA, Pallav P, Kleverlaan CJ, Kuitert RB, Prahl-Andersen B, Feilzer AJ. Effect of long-term repeated deflections on fatigue of preloaded superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop 2008;133:269-76.
- Wilkinson PD, Dysart PS, Hood JA, Herbison GP. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 2002;121: 483-95.
- 124. Yeh CL, Kusnoto B, Viana G, Evans CA, Drummond JL. In-vitro evaluation of frictional resistance between brackets with passiveligation designs. Am J Orthod Dentofacial Orthop 2007;131: 704.e11-22.
- 125. Yu YL, Qian YF. The clinical implication of self-ligating brackets. Shanghai Kou Qiang Yi Xue 2007;16:431-5.
- Zachrisson BU. Use of self-ligating brackets, superelastic wires, expansion/proclination, and permanent retention—a word of caution. World J Orthod 2006;7:198-206.
- 127. Zhu K, Wang CL, Wang J, Zhao YH. Comparison study of friction of FAS self-ligating bracket and traditional selfligating bracket. Hua Xi Kou Qiang Yi Xue Za Zhi 2007;25: 371-4.
- Ziuchkovski JP, Fields HW, Johnston WM, Lindsey DT. Assessment of perceived orthodontic appliance attractiveness. Am J Orthod Dentofacial Orthop 2008;133:S68-78.

APPENDIX 1

Database searching strategies

PubMed: ("Orthodontic Appliances"[Mesh] OR bracket* OR brace OR braces) AND (self-ligat* OR self ligat*).

Web of Science and Cochrane Library: (brace* OR bracket*) AND (self-ligat* OR self ligat*).

Embase: (1) [exp Orthodontics/ or exp Orthodontic Device/ or brackets.mp; (2) self-ligating.mp; (3) 2 or self-ligat*.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]; (4) 1 and 3; (5) from 4 keep 1.

APPENDIX 2

Characteristics of excluded studies

Study	Reason for exclusion
Agarwal et al, ³⁴ 2008	Inclusion criteria for article type not met
Baccetti and Franchi,35 2006	In vitro study
Badawi et al. ¹⁹ 2008	In vitro study
Baek et al, ³⁶ 2008	Inclusion criteria for comparison
$Back \frac{37}{2008}$	Pesponse
Back, 2008 Badnar at al $\frac{38}{1002}$	In vitro study
Bednar et al. ³⁹ 1001	In vitro study
Bednar et al, 1991	
Berger, ^a 1999	not met
Berger, ⁴¹ 1994	Inclusion criteria for article type not met
Berger, ¹⁰ 1990	In vitro study
Blake et al, ⁴² 1995	Not outcome of interest
Bortoly et al, ⁴³ 2008	In vitro study
Breuning, ⁴⁴ 2008	Not pertinent
Budd et al, ⁹ 2008	In vitro study
Cacciafesta et al. ⁴⁵ 2003	In vitro study
Chalgren et al. ⁴⁶ 2007	In vitro study
Champagne et al. ⁴⁷ 2007	Inclusion criteria for article type
2 1000	not met
Damon, ⁻ 1998	not met
Damon, ³ 1998	Inclusion criteria for article type not met
Deguchi et al,48 2007	Not pertinent
Elayyan et al, ⁴⁹ 2008	Ex vivo study
Elekdag-Turk et al, ⁵⁰ 2008	Inclusion criteria for comparison
Fliades 51 2008	Response
Eliades ⁵² 2006	Response
Eliades and Bourauel ⁵³ 2005	Inclusion criteria for article type
	not met
Ellis, ⁵⁴ 2008	Inclusion criteria for article type not met
Fleming et al, ⁵⁵ 2009	Not outcome of interest
Fleming et al, ⁵⁶ 2008	Inclusion criteria for article type not met
Franchi et al, ⁵⁷ 2008	In vitro study
Gandini et al,58 2008	In vitro study
Garino and Garino, ⁵⁹ 2004	Inclusion criteria for comparison
Garino and Favero, ⁶⁰ 2003	Inclusion criteria for comparison
Giancotti and Greco, ⁶¹ 2008	Inclusion criteria for article type not met
Giancotti and Greco, ⁶² 2008	Inclusion criteria for article type not met
Goldbecher et al. ⁶³ 2005	Unable to obtain article
Gottlieb et al. ⁶⁴ 1972	Inclusion criteria for article type
	not met
Griffiths et al, 2005	In vitro study
Hain et al, ⁶⁵ 2006	In vitro study
Hain et al, ⁹⁰ 2003	In vitro study

APPENDIX 2. Continued

Study	Reason for exclusion
Harradine, ¹¹ 2003	Inclusion criteria for article type
Harradine and Birnie, ³³ 1996	Inclusion criteria for article type not met
Havashi et al. ⁶⁷ 2007	Not pertinent
He et al. 68 2009	Protocol
Hemingway et al 69 2001	In vitro study
Henao and Kusy ⁶ 2005	In vitro study
Henzo and Kusy, 2005	In vitro study
Lenson at al 71 2000	Not portinent
Janson et al, 2000 $K_{}$ ⁷² 2007	Not pertinent
Kao, 2007 Katsaros and Dijkman, ⁷³ 2003	Inclusion criteria for article type
$K_{\text{herekers}} = 1^7 2004$	not met
Knambay et al, 2004	
Kim et al, $^{2}2008$	In vitro study
Kusy, 2004	In vitro study
Lin and Xu, ⁷⁵ 2008	not met
Loftus and Årtun, ⁷⁶ 2001	In vitro study
Loftus et al, ⁷⁷ 1999	In vitro study
Loh, ⁷⁸ 2007	Inclusion criteria for comparison
Macchi et al, ⁷⁹ 2002	Inclusion criteria for article type not met
Maijer and Lamark, ⁸⁰ 2004	Inclusion criteria for article type not met
Mallory et al, ⁸¹ 2004	In vitro study
Matarese et al. ⁸² 2008	In vitro study
Menendez et al. ⁸³ 2005	Study not published or peer-
	reviewed (conference proceeding)
Miles ⁸⁴ 2008	Response
Montgomery, ⁸⁵ 2007	Inclusion criteria for article type
Morine at al ⁸⁶ 2008	In vitro study
Northmum at al $\frac{87}{2007}$	In vitro study
$P_{\rm res} d_{\rm res}^2 = t_{\rm res}^{-1} \frac{88}{2008} 2008$	In vitro study
Pandis et al. 2008	In vitro study
$P = 1^{10} + 1^{90} 2000$	III vitro study
Pandis et al. 2008	Not outcome of interest
Pandis et al, 2008	Not outcome of interest
Pandis et al. 2 2006	Not outcome of interest
Pandis et al, ⁵⁵ 2007	In vitro study
Park et al, 34 2004	Not pertinent
Parkin, ⁹³ 2005	Inclusion criteria for article type not met
Pellan, ⁹⁶ 2006	Inclusion criteria for article type not met
Pizzoni et al, ²⁰ 1998	In vitro study
Prososki et al,97 1991	In vitro study
Razavi, ⁹⁸ 2008	Inclusion criteria for article type
Read-Ward et al ⁹⁹ 1997	Ex vivo study
Redlich et al ¹⁰⁰ 2008	Not pertinent
Redlich et al 101 2003	In vitro study
Paichanadar at al $102 2009$	In vitro study
Reference et al. 2008	In vitro study
Dinghugg at al ¹⁰⁴ 2009	ni vitro study
Kinchuse et al, 2008	Response

APPENDIX 2. Continued

Study	Reason for exclusion
Rinchuse and Miles, ¹⁰⁵ 2007	Inclusion criteria for article type not met
Rinchuse et al, ¹⁰⁶ 2007	Inclusion criteria for article type not met
Sakima et al, ¹⁰⁷ 2006	Not pertinent
Scott et al, ¹⁰⁸ 2008	Not outcome of interest
Shivapuja and Berger, ¹⁶ 1994	In vitro study
Sims et al, ¹⁰⁹ 1994	Ex vivo study
Sims et al, ²¹ 1993	In vitro study
Sivakumar et al, ¹¹⁰ 2006	Inclusion criteria for article type not met
Smith et al, ¹¹¹ 2008	Protocol
Southard et al, ¹¹² 2007	Inclusion criteria for article type not met
Tecco et al, ¹¹³ 2007	In vitro study
Tecco et al, ¹¹⁴ 2005	In vitro study
Thermac et al, ¹¹⁵ 2008	In vitro study
Thomas et al, ¹¹⁶ 1998	In vitro study
Thorstenson and Kusy, ¹¹⁷ 2002	In vitro study
Thorstenson and Kusy, ¹¹⁸ 2002	In vitro study
Thorstenson and Kusy, ¹¹⁹ 2001	In vitro study
Thorstenson and Kusy, ¹²⁰ 2000	Meeting abstract
Torres et al, ¹²¹ 2005	Study not published or peer- reviewed (conference proceeding)
van Aken et al. ¹²² 2008	Not pertinent
Wilkinson et al. ^{123} 2002	Not pertinent
Yeh et al. 124 2007	In vitro study
Yu and Qian, ¹²⁵ 2007	Inclusion criteria for article type not met
Zachrisson, ¹²⁶ 2006	Inclusion criteria for article type not met
Zhu et al, ¹²⁷ 2007	In vitro study
Ziuchkovski et al, ¹²⁸ 2008	Not outcome of interest

APPENDIX 3

Quality assessment of the included studies

		Rando	mized clinical trials	7			
Study	Randomization described	Allocation concealment reported	Intent to treat analysis performed	Blinded assessment stated	A priori power calculation performed	Total points	Risk of bias
Fleming et al, ²³ 2009 Scott et al, ²⁴ 2008	1 1	1 0	1 1	0.5 1	1 1	4.5 4	Low Low
			Cohort studies				
Study	Representative sample of adequate size (~30 in each group)	Well- matched sample	Adjusting for confounders	Blinded assessment stated	Reporting drop-outs	Total points	Risk of bias
Eberting et al, 12 2001 Hamilton et al, 31 2008 Harradine, 13 2001 Jiang and Fu, 25 2008 Miles, 26 2005 Miles et al, 28 2006 Miles, 27 2007 Pandis et al, 29 2006 Pandis et al, 30 2007 Pandis et al, 22 2009 (in press)	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0.5 \\ 1 \\ 1 \end{array} $	0.5 1 1 0.5 0.5 1 1 0.5 1 1	1 0 0.5 0 NA NA 1 1 1	0 0 1 0 0 0 0 0 0 0 0	NA NA 0.5 1 1 1 0 1 1	2.5 3 1.5 2.5 3 2 2 4 4	Moderate Moderate High Moderate Moderate Moderate Low Low
		Cn	oss-sectional studies	1			
Berger and Byloff, ¹⁴ 2001 Maijer and Smith, ¹⁵	0.5	0	0	0	NA	0.5	High High
1990 Paduano et al, ¹⁷ 2008 Turnbull and Birnie, ³² 2007	0.5 1	0	0 0.5	0 0	NA NA	0.5	High Moderate

Quality assessment was based on a modified Newcastle-Ottawa scale: *1*, criterion met; 0.5, criterion partially met; 0, criterion not met or not stated. *NA*, Not applicable.

Risk of bias: *low*, >4 points; *moderate*, 2-3.5 points; *high*, <2 points.