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Intercellular gap junctions permiz bone cells to intercellularly transmit, and subsequently process, 
periosteal functional matrix information, after its initial intraceilular mechanotransduction. In 
addition, gap junctions, as electrical synapses, underlie the organization of bone tissue as a 
connected cellular network, and the fact that all bone adaptation processes are multicellular. The 
structural and operational characteristics of such biologic networks are outlined and their specific 
bone cell attributes described. Specifically, bone is "tuned" to the precise frequencies of skeletal 
muscle activity. The inclusion of the concepts and databases that are related to the intracellular and 
intercellular bone cell mechanisms and processes of mechanotransduction and the organization of 
bone as a biologic connected cellular network permit revision of the functional matrix hypothesis, 
which offers an explanatory chain, extending from the epigenetic event of muscle contraction 
hierarchically downward to the regulation of the bone cell genome. (Am J Orthod Dentofac Orthop 
1997;112:221-6.) 

T h e  first article in this series considered 
the implications for the functional matrix hypothesis 
(FMH) of the ability of bone cells to carry out 
intracellular mechanosensation and transduction 
and intercellular communication. In this article, we 
will consider the implications for the FMH of the 
inclusion of connectionist network theory. 

BONE AS AN OSSEOUS CONNECTED CELLULAR 
NETWORK (CCN) 

All bone cells, except osteoclasts, are extensively 
interconnected by gap junctions 8791 that form an 
o s s e o u s  C C N .  7,8,42 In these junctions, connexin 43 is 
the major protein. 92 Each osteocyte, enclosed within 
its mineralized lacuna, has many (n = +80) cyto- 
plasmic (canalicular) processes, _+15 ~m long and 
arrayed three-dimensionally, that interconnect with 
similar processes of up to 12 neighboring cells. 
These processes lie within mineralized bone matrix 
channels (canaliculi). The small space between the 
cell process plasma membrane and the canaticular 
wall is filled macromolecular complexes. 

Gap junctions are found where the plasma mem- 
branes of a pair of markedly overlapping canalicular 
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processes meet. 93 In compact bone, the canaliculi 
cross "cement lines," and they form extensive com- 
munications between osteons and interstitial re- 
gions. 94 Gap junctions also connect superficial os- 
teocytes to periosteal and endOsteal osteoblasts. All 
osteoblasts are similarly interconnected laterally. 
Vertically, gap junctions connect periosteal osteo- 
blasts with preosteoblastic cells, and these, in turn, 
are similarly interconnectedY Effectively, each 
CCN is a true syncytium. 87,91,93 Bone cells are elec- 
trically active. 57,Ss,sS,95-ml In a very real sense, bone 
tissue is "hard-wired. ''7,s,96 

In addition to permitting the intercellular trans- 
mission of ions and small molecules, gap junctions 
exhibit both electrical and fluorescent dye transmis- 
sion. 63 Gap junctions are electrical synapses, in 
contradistinction to interneuronal, chemical syn- 
apses, and, significantly, they permit bidirectional 
signal traffic, e.g., biochemical, ionic. 

Mechanotransductively activated bone cells, e.g., 
osteocytes, can initiate membrane action potentials 
capable of transmission through interconnecting gap 
junctions. The primacy of ionic signals rather than 
secondary messengers is suggested here, because, 
although bone cell transduction may also produce 
small biochemical molecules that can pass through 
gap junctions, the time-course of mechanosensory 
processes is believed to be too rapid for the involve- 
ment of secondary messengersY. 32 (See Carvalho et 
al. 1°2 for an opposite view.) A CCN is operationally 
analogous to an "artificial neural network," in which 
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massively parallel or parallel-distributed signal pro- 
cessing occurs. 1°3-m5 It computationally processes, in a 
multiprocessor network mode, the intercellular signals 
created by an electrical type of mechanotransduction 
of periosteal functional matrix stimuli. Subsequently 
the computed network output informational signals 
move hierarchically "upward" to regulate the skeletal 
unit adaptational responses of the osteoblasts. 

Fortunately, the bases of connectionist theory 
are Sufficiently secure to permit modeling of a 
biologically realistic osseous C C N .  1°6-11° It consists 
of a number of relatively simple, densely intercon- 
nected processing elements (bone cells), with many 
more interconnections than cells. It is useful that 
bone cells form a network because individual recep- 
tors cannot code unambiguously-only a population 
of cells can do SO. 103 

In network theory, these cells are organized into 
"layers": an initial input, a final output, and one or 
more intermediate or "hidden" layers. Importantly, 
such networks need not be numerically complex to 
be operationally complex. H~ The operational pro- 
cesses are identical, in principle, for all bone cells in 
all layers. Regardless of the actual physiological 
stipulatory process, each cell in any layer may simul- 
taneously receive several "weighted" inputs (stimu- 
li). A weight is some quantitative attribute. In the 
initial layer, these represent the loadings. Within 
each cell independently, " . . .  all the weighted inputs 
are then summed. ''112 This sum is then compared, 
within the cell, against some liminal or threshold 
value. If this value is exceeded, an intracellular 
signal is generated, i.e., successful mechanotrans- 
duction occurs. This signal is then transmitted iden- 
tically to all the "hidden" layer cells (adjacent osteo- 
cytes) to which each initial layer cell is connected by 
gap junctions (and there are many styles of connec- 
tivity). Next, similar processes of weighted signal 
summation, comparison, and transmission occur in 
these intermediate layers until the final layer cells 
(osteoblasts) are reached. The outputs of these 
anatomically superficial cells determines the site, 
rate, direction, magnitude, and duration of the 
specific adaptive response, i.e., deposition, resorp- 
tion, and/or maintenance, of each cohort of osteo- 
blasts. ~13 

Information is not stored discretely in a CCN, as 
it is in a conventional, single CPU computer. Rather 
it is distributed across all or part of the network, and 
several types of information may be stored simulta- 
neously. The instantaneous state of a CCN is a 
property of the state of all its cells and of all their 
connections. Accordingly, the informational repre- 

sentation of CCN is redundant, assuring that the 
network is fault or error tolerant, i.e, one or several 
inoperative cells causes little or no noticeable loss in 
network operations, 112 a matter of useful clinical 
significance. 

The CCNs show oscillation, i.e., iterative recip- 
rocal signaling (feedback) between layers. This at- 
tribute enables them to adjustively self-organize. 
This behavior is related to the fact that biologic 
CCNs are not preprogrammed; rather they learn by 
unsupervised or epigenetic "training, ''114 a process 
probably involving structural or conformational 
changes in the cytoskeleton. 83 The phenomena of 
both network "training" and "learning" are related 
to the suggested effects of the oscillatory nature of 
their strain history. 115 Accordingly, the structurally 
more complex network attributes and behavior of a 
CCN gradually or epigenetically self-organize and 
emerge during operation. These network attributes 
are not reducible, i.e., they are neither apparent nor 
predictable from a prior knowledge of the attributes 
of individual cells. 

Gap junctions, permitting bidirectional flow of 
information, are the cytological basis for the oscil- 
latory behavior of a CCN. All the osteoblasts of a 
cohort engaged in an identical adaptation process 
are interconnected by open gap junctions. The pres- 
ence of sharp histological discontinuities between 
cohorts of phenotypically different osteoblasts is 
related to their ability to close gap junctions at the 
boundaries between such cohorts, and so prevent 
the flow of information. 116,1~7 Informational net- 
works also can transmit inhibitory signals, a signifi- 
cant matter beyond present concerns. 118 

A skeletal CCN displays the following attributes: 
(1) Developmentally, it is an untrained self-orga- 
nized, self-adapting and epigenetically regulated sys- 
tem. (2) Operationally, it is a stable, dynamic system 
that exhibits oscillatory behavior permitting feed- 
back. It operates in a noisy, nonstationary environ- 
ment, and probably uses useful and necessary inhib- 
itory inputs. (3) Structurally, an osseous CCN is 
nonmodular, i.e., the variations in its organization 
permit discrete processing of differential signals. It is 
this attribute that permits the triad of histologic 
responses to a unitary loading event. 

Certain simplifications exist in this article, as in 
most of the bone literature. It is assumed that bone 
cells are organized in only two dimensions, bone 
loadings occur only at discrete loci, and gradients of 
strain are not considered. However, biologic reality 
is otherwise. In a loaded three-dimensional bone 
volume, gradients of deformation must exist, and 
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each osteocyte probably senses uniquely different 
strain properties. Further, it is probable that each 
osteocyte is potentially able to transmit three differ- 
ent adaptational signals, in three different direc- 
t ions-some stimulatory and some inhibitory. How- 
ever, these processes have not yet been adequately 
modeled. The role of pe1~osteal functional matrices: 
new insight. 

The morphogenetic primacy of periosteal func- 
tional matrices on their skeletal units is consensually 
accepted. As a muscular demand alters, e.g., myec- 
tomy, myotomy, neurectomy, exercise, hypertrophy, 
hyperplasia, atrophy, augmentation, or reposition- 
ing, the triad of active bone growth processes cor- 
respondingly adapts the form of its specifically re- 
lated skeletal unit. 

Presently excluding the stimulation of neural 
afferents in muscle, tendon, and periosteum, extrin- 
sic physical loadings tend to deform bone tissue and 
to invoke skeletal unit (bone) adaptation responsive 
processes. A classic example is the regulation of 
coronoid process form by the temporalis muscle.~9 
The tension in the tendon of this contracted muscle, 
transmitted through intertwined periosteal fibers 
inserted into subjacent bone, deforms the loaded 
skeletal unit. 12° 

Although some periosteal osteoNasts may be 
directly stimulated, ~2~ extant data suggest osteocytic 
primacy in mechanosensory processes. ~22 Anatomi- 
cally, bone cells are competent mechanoreceptors. 
Their three-dimensional array of extensive canalic- 
ular cell processes is architecturally well-suited to 
sense deformation of the mineralized matrixJ 23 

Although no one mechanical parameter reliably 
predicts all bone adaptational or remodeling re- 
sponses, 124 strain probably plays the primary role 125-128 
and is a competent stimulus. 51 The significant strain 
attribute may vary with specific conditions. 129 These 
include: (a) loading category-bone responds best to 
dynamic rather static loading54; (b) frequency-osteo- 
cytes may be physiologically "tuned" to the frequencies 
of muscle function, 13°132 tunings being analogous to 
those of specialized nonosseous sensory cells, 34,35 e.g., 
auditory hair cells; and (c) magnitude-relatively small 
microstrains (txe) (about 10 -6 mm/mm), and strain 
magnitudes of 2000 + 1000 ge, are morphogenetically 
competent.55,56,129. ~33 

Although it is reasonably presumed that mech- 
anosensory processes, of both the ionic and mechan- 
ical type, involve the plasma membrane of the 
osteocytic soma or canalicular processes, the recep- 
tive, and subsequent transductive, processes are 
neither well understood nor consensually agreed on. 

Skeletal muscle contraction is a typical perios- 
teal functional matrix loading event, 13,14A6,12°,134'135 
and frequency is one of its critical parameters. 
Although the fundamental frequency of contracting 
muscle is about 2 Hz, other strain-related harmonics 
of 15 to 40 Hz exist. 

These higher-order frequencies, significantly 
related to bone adaptational responses, are 
" . . .  present within the [muscle contraction] strain 
energy spectra regardless of animal or activity and 
implicate the dynamics of muscle contraction as the 
source of this energy band" (italics mine). 68,132'~36 Of 
particular significance to the FMH is the close 
similarity of muscle stimulus frequencies to bone 
tissue response frequencies. 

MECHANOTRANSDUCTION: A TENTATIVE 
SYNTHESIS 

The previously mentioned data suggest that the 
ability of periosteal functional matrices to regulate 
the adaptive responses of their skeletal units by ionic 
mechanotransductive processes is related to several 
factors. These are that (a) normal muscle function 
strains attached bone tissue intermittently; (b) the 
dynamics of skeletal muscle contraction fit rather 
nicely with the energetic requirements for bone cell 
responsiveness; (c) the range of specific strain- 
frequency harmonics of muscle dynamics are also 
those found to be morphogenetically competent 
(i.e., osteoregulatory); (d) normal skeletal muscle 
activity produces intraosseous electric fields on the 
order of extrinsic fields found to be similarly mor- 
phogenetic; and, (e) bone cells may be stimulated by 
two mechanisms-directly by strain-activated plasma 
membrane channels and indirectly by electrokinen- 
tic phenomena. 

These factors strongly suggest a rather precise 
matching of significant operational characteristics 
between a contracting skeletal muscle stimulus and 
the ability of loaded bone cells to transduce this into 
signals capable of regulating their adaptive re- 
sponses. In a phrase, bone appears to be closely 
"tuned" to skeletal muscle, i.e., skeletal units are 
tuned to their periosteal functional matrices. 

When both the ionic membrane and the me- 
chanical (molecular lever) transductive processes 
are conceptually and operationally combined with 
the data of both electric field effects and of contrac- 
tion frequency energetics, they provide a logically 
sufficient biophysical basis of support for the hy- 
pothesis of epigenetic regulation of skeletal tissue 
adaptation 1,13,16-1s,38,129,137 

In reality, it is probable that the ionic (electrical) 
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and mechanical (molecular lever) transductive pro- 
cesses in osteocytes are neither exhaustive nor mu- 
tually exclusive. While using differing intermediate 
membrane mechanisms or processes, they share a 
common final common pathway, i.e., they eventually 
produce signals regulatory of osteoblastic activity. 
Certainly in the ionic processes, and possibly in the 
molecular lever system mechanism, the transductive 
process(es) also cause a transplasma membrane 
ionic flow(s), creating a signal(s) capable of inter- 
cellular transmission to neighboring bone cells 
through gap junctions, 1~1 and then subsequent bio- 
logic computation in an osseous CCN. 

CONCLUSION 

Where the original FMH version offered only verbal 
descriptions of periosteal matrix function and skeletal unit 
response, the addition to the FMH of the concepts of 
mechanotransduction and of computational bone biology 
offers an explanatory chain extending from the epigenetic 
event of skeletal muscle contraction, hierarchically down- 
ward, through the cellular and molecular levels to the 
bone cell genome, and then upward again, through histo- 
logic levels to the event of gross bone form adaptational 
changes. Analyzing size and shape changes by reference- 
frame-invariant, finite element methods produces a more 
comprehensive and integrated description of the totality 
of the processes of epigenetic regulation of bone form 
than previously possible. 
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